Vestibular role of KCNQ4 and KCNQ5 K+ channels revealed by mouse models.

نویسندگان

  • Guillermo Spitzmaul
  • Leonardo Tolosa
  • Beerend H J Winkelman
  • Matthias Heidenreich
  • Maarten A Frens
  • Christian Chabbert
  • Chris I de Zeeuw
  • Thomas J Jentsch
چکیده

The function of sensory hair cells of the cochlea and vestibular organs depends on an influx of K(+) through apical mechanosensitive ion channels and its subsequent removal over their basolateral membrane. The KCNQ4 (Kv7.4) K(+) channel, which is mutated in DFNA2 human hearing loss, is expressed in the basal membrane of cochlear outer hair cells where it may mediate K(+) efflux. Like the related K(+) channel KCNQ5 (Kv7.5), KCNQ4 is also found at calyx terminals ensheathing type I vestibular hair cells where it may be localized pre- or postsynaptically. Making use of Kcnq4(-/-) mice lacking KCNQ4, as well as Kcnq4(dn/dn) and Kcnq5(dn/dn) mice expressing dominant negative channel mutants, we now show unambiguously that in adult mice both channels reside in postsynaptic calyx-forming neurons, but cannot be detected in the innervated hair cells. Accordingly, whole cell currents of vestibular hair cells did not differ between genotypes. Neither Kcnq4(-/-), Kcnq5(dn/dn) nor Kcnq4(-/-)/Kcnq5(dn/dn) double mutant mice displayed circling behavior found with severe vestibular impairment. However, a milder form of vestibular dysfunction was apparent from altered vestibulo-ocular reflexes in Kcnq4(-/-)/Kcnq5(dn/dn) and Kcnq4(-/-) mice. The larger impact of KCNQ4 may result from its preferential expression in central zones of maculae and cristae, which are innervated by phasic neurons that are more sensitive than the tonic neurons present predominantly in the surrounding peripheral zones where KCNQ5 is found. The impact of postsynaptic KCNQ4 on vestibular function may be related to K(+) removal and modulation of synaptic transmission.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

KCNQ5/K(v)7.5 potassium channel expression and subcellular localization in primate retinal pigment epithelium and neural retina.

Previous studies identified in retinal pigment epithelial (RPE) cells an M-type K(+) current, which in many other cell types is mediated by channels encoded by KCNQ genes. The aim of this study was to assess the expression of KCNQ genes in the monkey RPE and neural retina. Application of the specific KCNQ channel blocker XE991 eliminated the M-type current in freshly isolated monkey RPE cells, ...

متن کامل

Diclofenac distinguishes among homomeric and heteromeric potassium channels composed of KCNQ4 and KCNQ5 subunits.

KCNQ4 and KCNQ5 potassium channel subunits are expressed in vascular smooth muscle cells, although it remains uncertain how these subunits assemble to form functional channels. Using patch-clamp techniques, we compared the electrophysiological characteristics and effects of diclofenac, a known KCNQ channel activator, on human KCNQ4 and KCNQ5 channels expressed individually or together in A7r5 r...

متن کامل

Structural requirements for differential sensitivity of KCNQ K+ channels to modulation by Ca2+/calmodulin.

Calmodulin modulation of ion channels has emerged as a prominent theme in biology. The sensitivity of KCNQ1-5 K+ channels to modulation by Ca2+/calmodulin (CaM) was studied using patch-clamp, Ca2+ imaging, and biochemical and pharmacological approaches. Coexpression of CaM in Chinese hamster ovary (CHO) cells strongly reduced currents of KCNQ2, KCNQ4, and KCNQ5, but not KCNQ1 or KCNQ3. In simul...

متن کامل

Regulation of KCNQ4 potassium channel prepulse dependence and current amplitude by SGK1 in Xenopus oocytes.

The KCNQ gene family comprises voltage-gated potassium channels expressed in epithelial tissues (KCNQ1, KCNQ5), inner ear structures (KCNQ1, KCNQ4) and the brain (KCNQ2-5). KCNQ4 is expressed in inner and outer hair cells of the inner ear where it determines electrical excitability. Accordingly, loss of function mutations of the KCNQ4 gene cause hearing loss. Several K+ channels including the c...

متن کامل

Single-channel analysis of KCNQ K+ channels reveals the mechanism of augmentation by a cysteine-modifying reagent.

The cysteine-modifying reagent N-ethylmaleimide (NEM) is known to augment currents from native M-channels in sympathetic neurons and cloned KCNQ2 channels. As a probe for channel function, we investigated the mechanism of NEM action and subunit specificity of cloned KCNQ2-5 channels expressed in Chinese hamster ovary cells at the whole-cell and single-channel levels. Biotinylation assays and to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 288 13  شماره 

صفحات  -

تاریخ انتشار 2013